{ "id": "1404.5549", "version": "v1", "published": "2014-04-22T16:43:17.000Z", "updated": "2014-04-22T16:43:17.000Z", "title": "On queues with service and interarrival times depending on waiting times", "authors": [ "Onno J. Boxma", "Maria Vlasiou" ], "comment": "19 pages, 1 figure, 24 references", "journal": "Queueing Systems, 56(3-4), 121-132, August 2007", "doi": "10.1007/s11134-007-9011-3", "categories": [ "math.PR" ], "abstract": "We consider an extension of the standard G/G/1 queue, described by the equation $W\\stackrel{\\mathcal{D}}{=}\\max\\{0, B-A+YW\\}$, where $\\mathbb{P}[Y=1]=p$ and $\\mathbb{P}[Y=-1]=1-p$. For $p=1$ this model reduces to the classical Lindley equation for the waiting time in the G/G/1 queue, whereas for $p=0$ it describes the waiting time of the server in an alternating service model. For all other values of $p$ this model describes a FCFS queue in which the service times and interarrival times depend linearly and randomly on the waiting times. We derive the distribution of $W$ when $A$ is generally distributed and $B$ follows a phase-type distribution, and when $A$ is exponentially distributed and $B$ deterministic.", "revisions": [ { "version": "v1", "updated": "2014-04-22T16:43:17.000Z" } ], "analyses": { "subjects": [ "60K25" ], "keywords": [ "waiting time", "model reduces", "alternating service model", "fcfs queue", "service times" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5549B" } } }