{ "id": "1404.5380", "version": "v1", "published": "2014-04-22T05:50:23.000Z", "updated": "2014-04-22T05:50:23.000Z", "title": "Lefschetz pencils and finitely presented groups", "authors": [ "Ryoma Kobayashi", "Naoyuki Monden" ], "comment": "25 pages, 10 figures", "categories": [ "math.GT" ], "abstract": "In this paper, given a finitely presented group $\\Gamma$, we provide the explicit monodromy of a Lefschetz fibration with $(-1)$-sections whose total space has fundamental group $\\Gamma$ by applying \"twisted substitutions\" to that of the Lefschetz fibration constructed by Cadavid and independently Korkmaz. Consequently, we obtain an upper bound for the minimum $g$ such that there exists a genus-$g$ Lefschetz pencil on a smooth 4-manifold whose fundamental group is isomorphic to $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2014-04-22T05:50:23.000Z" } ], "analyses": { "keywords": [ "lefschetz pencil", "fundamental group", "total space", "explicit monodromy", "upper bound" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5380K" } } }