{ "id": "1404.5163", "version": "v2", "published": "2014-04-21T10:25:44.000Z", "updated": "2014-09-26T12:37:32.000Z", "title": "On values of binary quadratic forms at integer points", "authors": [ "Manoj Choudhuri", "S. G. Dani" ], "comment": "20 pages, 3 figures added, Accepted for publication in Mathematical Research Letters", "categories": [ "math.NT", "math.DS" ], "abstract": "We obtain estimates for the number of integral solutions in large balls, of inequalities of the form $|Q(x, y)| < \\epsilon$, where $Q$ is an indefinite binary quadratic form, in terms of the Hurwitz continued fraction expansions of the slopes of the lines on which $Q$ vanishes. The method is based on a coding of geodesics on the modular surface via Hurwitz expansions of the endpoints of their lifts in the Poincare half-plane.", "revisions": [ { "version": "v1", "updated": "2014-04-21T10:25:44.000Z", "comment": "18 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-26T12:37:32.000Z" } ], "analyses": { "subjects": [ "11K60", "37A17" ], "keywords": [ "integer points", "indefinite binary quadratic form", "hurwitz continued fraction expansions", "large balls", "integral solutions" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5163C" } } }