{ "id": "1404.5161", "version": "v1", "published": "2014-04-21T10:21:48.000Z", "updated": "2014-04-21T10:21:48.000Z", "title": "A Quantitative Result on Diophantine Approximation for Intersective Polynomials", "authors": [ "Neil Lyall", "Alex Rice" ], "comment": "6 pages", "categories": [ "math.NT", "math.CA", "math.CO" ], "abstract": "In this short note, we closely follow the approach of Green and Tao to extend the best known bound for recurrence modulo 1 from squares to the largest possible class of polynomials. The paper concludes with a brief discussion of a consequence of this result for polynomials structures in sumsets and limitations of the method.", "revisions": [ { "version": "v1", "updated": "2014-04-21T10:21:48.000Z" } ], "analyses": { "keywords": [ "diophantine approximation", "intersective polynomials", "quantitative result", "short note", "recurrence modulo" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5161L" } } }