{ "id": "1404.5159", "version": "v3", "published": "2014-04-21T10:16:45.000Z", "updated": "2014-07-02T12:51:47.000Z", "title": "Global well-posedness on the derivative nonlinear Schrödinger equation revisited", "authors": [ "Yifei Wu" ], "comment": "8 pages. Some typos are corrected", "categories": [ "math.AP" ], "abstract": "As a continuation of the previous work \\cite{Wu}, we consider the global well-posedness for the derivative nonlinear Schr\\\"odinger equation. We prove that it is globally well-posed in energy space, provided that the initial data $u_0\\in H^1(\\mathbb{R})$ with $\\|u_0\\|_{L^2}< 2\\sqrt{\\pi}$.", "revisions": [ { "version": "v3", "updated": "2014-07-02T12:51:47.000Z" } ], "analyses": { "subjects": [ "35Q55", "35A01" ], "keywords": [ "derivative nonlinear schrödinger equation", "global well-posedness", "energy space", "initial data", "continuation" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5159W" } } }