{ "id": "1404.5094", "version": "v2", "published": "2014-04-21T02:19:45.000Z", "updated": "2014-10-20T12:56:19.000Z", "title": "On limit points of the sequence of normalized prime gaps", "authors": [ "William D. Banks", "Tristan Freiberg", "James Maynard" ], "comment": "Revised and improved", "categories": [ "math.NT" ], "abstract": "Let $p_n$ denote the $n$th smallest prime number, and let $\\boldsymbol{L}$ denote the set of limit points of the sequence $\\{(p_{n+1} - p_n)/\\log p_n\\}_{n = 1}^{\\infty}$ of normalized differences between consecutive primes. We show that for $k = 9$ and for any sequence of $k$ nonnegative real numbers $\\beta_1 \\le \\beta_2 \\le ... \\le \\beta_k$, at least one of the numbers $\\beta_j - \\beta_i$ ($1 \\le i < j \\le k$) belongs to $\\boldsymbol{L}$. It follows at least $12.5%$ of all nonnegative real numbers belong to $\\boldsymbol{L}$.", "revisions": [ { "version": "v1", "updated": "2014-04-21T02:19:45.000Z", "abstract": "Let $p_n$ denote the $n$th smallest prime number, and let $\\boldsymbol{L}$ denote the set of limit points of the sequence $ \\left\\{(p_{n+1} - p_n)/\\log p_n\\right\\}_{n = 1}^{\\infty} $ of normalized differences between consecutive primes. We show that for $k = 50$ and for any sequence of $k$ nonnegative real numbers $\\beta_1 \\le \\beta_2 \\le \\cdots \\le \\beta_k$, at least one of the numbers $ \\{\\beta_j - \\beta_i : 1 \\le i < j \\le k\\} $ belongs to $\\boldsymbol{L}$. It follows that more than $2\\%$ of all nonnegative real numbers belong to $\\boldsymbol{L}$.", "comment": "19 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-20T12:56:19.000Z" } ], "analyses": { "subjects": [ "11N05", "11N36" ], "keywords": [ "normalized prime gaps", "limit points", "th smallest prime number", "nonnegative real numbers belong" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.5094B" } } }