{ "id": "1404.4980", "version": "v1", "published": "2014-04-19T18:03:01.000Z", "updated": "2014-04-19T18:03:01.000Z", "title": "Monge-Kantorovich norms on spaces of vector measures", "authors": [ "Ion Chitescu", "Radu Miculescu", "Lucian Nita", "Loredana Ioana" ], "categories": [ "math.FA" ], "abstract": "One considers Hilbert space valued measures on the Borel sets of a compact metric space. A natural numerical valued integral of vector valued continuous functions with respect to vector valued functions is defined. Using this integral, different norms (we called them Monge-Kantorovich norm, modified Monge-Kantorovich norm and Hanin norm) on the space of measures are introduced, generalizing the theory of (weak) convergence for probability measures on metric spaces. These norms introduce new (equivalent) metrics on the initial compact metric space.", "revisions": [ { "version": "v1", "updated": "2014-04-19T18:03:01.000Z" } ], "analyses": { "subjects": [ "28B05", "46G10", "46E10", "28C15", "46B25", "46C05" ], "keywords": [ "vector measures", "initial compact metric space", "hilbert space valued measures", "natural numerical valued integral", "vector valued continuous functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.4980C" } } }