{ "id": "1404.4600", "version": "v2", "published": "2014-04-17T18:28:20.000Z", "updated": "2014-06-30T14:10:32.000Z", "title": "Optimal stopping for dynamic risk measures with jumps and obstacle problems", "authors": [ "Roxana Dumitrescu", "Marie-Claire Quenez", "Agnès Sulem" ], "categories": [ "math.OC" ], "abstract": "We study the optimal stopping problem for a monotonous dynamic risk measure induced by a BSDE with jumps in the Markovian case. We show that the value function is a viscosity solution of an obstacle problem for a partial integro-differential variational inequality, and we provide an uniqueness result for this obstacle problem.", "revisions": [ { "version": "v2", "updated": "2014-06-30T14:10:32.000Z" } ], "analyses": { "keywords": [ "obstacle problem", "optimal stopping", "partial integro-differential variational inequality", "markovian case", "value function" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.4600D" } } }