{ "id": "1404.4071", "version": "v2", "published": "2014-04-15T20:36:10.000Z", "updated": "2015-01-09T14:46:27.000Z", "title": "Phase transition for the dilute clock model", "authors": [ "Inés Armendáriz", "Pablo Augusto Ferrari", "Nahuel Soprano-Loto" ], "comment": "14 pages, 2 figures", "categories": [ "math.PR" ], "abstract": "We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour $q$-state clock model in $\\mathbb{Z}^d$, for every $q\\geq 2$ and $d\\geq 2$. This follows from the fact that the Edwards-Sokal random-cluster representation of the clock model stochastically dominates a supercritical Bernoulli bond percolation probability, a technique that has been applied to show phase transition for the low-temperature Potts model. The domination involves a combinatorial lemma which is one of the main points of this article.", "revisions": [ { "version": "v1", "updated": "2014-04-15T20:36:10.000Z", "title": "Phase transition for the clock model via random-cluster percolation", "abstract": "Let $\\phi(\\beta,q,d)$ be the random-cluster probability associated to the $q$-state clock model at inverse temperature $\\beta$ in dimension $d\\ge 2$. We find $\\beta_0(q,d)$ such that for $\\beta>\\beta_0$ the random cluster measure $\\phi(\\beta,q,d)$ stochastically dominates a supercritical Bernoulli bond percolation measure on $\\mathbb{Z}^d$. This provides an upper bound for the critical inverse temperature $\\beta_c$ for the clock model, for every value of $q$ and every dimension.", "comment": "13 pages, 1 figure", "journal": null, "doi": null, "authors": [ "Inés Armendáriz", "Pablo Augusto Ferrari", "Nahuel Soprano Loto" ] }, { "version": "v2", "updated": "2015-01-09T14:46:27.000Z" } ], "analyses": { "keywords": [ "random-cluster percolation", "phase transition", "inverse temperature", "supercritical bernoulli bond percolation measure", "random cluster measure" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.4071A" } } }