{ "id": "1404.3934", "version": "v1", "published": "2014-04-15T14:40:50.000Z", "updated": "2014-04-15T14:40:50.000Z", "title": "A thermodynamic formalism approach to the Selberg zeta function for Hecke triangle surfaces of infinite area", "authors": [ "Anke D. Pohl" ], "comment": "23 pages, 6 figures", "categories": [ "math.DS", "math-ph", "math.MP", "math.NT" ], "abstract": "We provide an explicit construction of a cross section for the geodesic flow on infinite-area Hecke triangle surfaces which allows us to conduct a transfer operator approach to the Selberg zeta function. Further we construct closely related cross sections for the billiard flow on the associated triangle surfaces and endow the arising discrete dynamical systems and transfer operator families with two weight functions which presumably encode Dirichlet respectively Neumann boundary conditions. The Fredholm determinants of these transfer operator families constitute dynamical zeta functions, which provide a factorization of the Selberg zeta function of the Hecke triangle surfaces.", "revisions": [ { "version": "v1", "updated": "2014-04-15T14:40:50.000Z" } ], "analyses": { "subjects": [ "37D40", "37C30", "37B10" ], "keywords": [ "selberg zeta function", "hecke triangle surfaces", "thermodynamic formalism approach", "infinite area", "respectively neumann boundary conditions" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s00220-015-2304-1", "journal": "Communications in Mathematical Physics", "year": 2015, "month": "Jul", "pages": 103, "volume": 337, "number": 1 }, "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015CMaPh.337..103P" } } }