{ "id": "1404.3761", "version": "v1", "published": "2014-04-14T21:37:07.000Z", "updated": "2014-04-14T21:37:07.000Z", "title": "Principalization of $2$-class groups of type $(2,2,2)$ of biquadratic fields $\\mathbb{Q}\\left(\\sqrt{\\strut p_1p_2q},\\sqrt{\\strut -1}\\right)$", "authors": [ "Abdelmalek Azizi", "Abdelkader Zekhnini", "Mohammed Taous", "Daniel C. Mayer" ], "categories": [ "math.NT" ], "abstract": "Let $p_1\\equiv p_2\\equiv -q\\equiv1 \\pmod4$ be different primes such that $\\displaystyle\\left(\\frac{2}{p_1}\\right)= \\displaystyle\\left(\\frac{2}{p_2}\\right)=\\displaystyle\\left(\\frac{p_1}{q}\\right)=\\displaystyle\\left(\\frac{p_2}{q}\\right)=-1$. Put $d=p_1p_2q$ and $i=\\sqrt{-1}$, then the bicyclic biquadratic field ${k}=\\mathbb{Q}(\\sqrt{d},i)$ has an elementary abelian $2$-class group, $\\mathbf{C}l_2(k)$, of rank $3$. In this paper, we study the principalization of the $2$-classes of ${k}$ in its fourteen unramified abelian extensions $\\mathbb{K}_j$ and $\\mathbb{L}_j$ within ${k}_2^{(1)}$, that is the Hilbert $2$-class field of ${k}$. We determine the nilpotency class, the coclass, generators and the structure of the metabelian Galois group $G=\\mathrm{Gal}(\\mathbb{L}/{k})$ of the second Hilbert 2-class field ${k}_2^{(2)}$ of ${k}$. Additionally, the abelian type invariants of the groups $\\mathbf{C}l_2(\\mathbb{K}_j)$ and $\\mathbf{C}l_2(\\mathbb{L}_j)$ and the length of the $2$-class tower of ${k}$ are given.", "revisions": [ { "version": "v1", "updated": "2014-04-14T21:37:07.000Z" } ], "analyses": { "subjects": [ "11R16", "11R29", "11R32", "11R37", "20D15" ], "keywords": [ "class group", "principalization", "bicyclic biquadratic field", "metabelian galois group", "abelian type invariants" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.3761A" } } }