{ "id": "1404.3703", "version": "v1", "published": "2014-04-14T19:21:53.000Z", "updated": "2014-04-14T19:21:53.000Z", "title": "Coherent ultrafilters and nonhomogeneity", "authors": [ "Jan StarĂ½" ], "comment": "9 pages", "categories": [ "math.GN", "math.LO" ], "abstract": "We introduce the notion of a coherent $P$-ultrafilter on a complete ccc Boolean algebra, strenghtening the notion of a $P$-point on $\\omega$, and show that these ultrafilters exist generically under ${\\mathfrak c} = {\\mathfrak d}$. This improves the known existence result of Ketonen. Similarly, the existence theorem of Canjar can be extended to show that coherently selective ultrafilters exist generically under ${\\mathfrak c} = {cov(M)}$. We use these ultrafilters in a topological application: a coherent $P$-ultrafilter on an algebra $B$ is an untouchable point in the Stone space of $B$, witnessing its nonhomogeneity.", "revisions": [ { "version": "v1", "updated": "2014-04-14T19:21:53.000Z" } ], "analyses": { "subjects": [ "54G05", "06E10" ], "keywords": [ "coherent ultrafilters", "nonhomogeneity", "complete ccc boolean algebra", "existence theorem", "stone space" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.3703S" } } }