{ "id": "1404.3360", "version": "v2", "published": "2014-04-13T09:25:19.000Z", "updated": "2016-08-27T07:13:39.000Z", "title": "On Conformal Vector Fields of a Class of Finsler Spaces I", "authors": [ "Guojun Yang" ], "comment": "17 pages", "categories": [ "math.DG" ], "abstract": "An $(\\alpha,\\beta)$-metric is defined by a Riemannian metric $\\alpha$ and $1$-form $\\beta$. In this paper, we characterize conformal vector fields of $(\\alpha,\\beta)$-spaces by some PDEs. Further, we determine the local solutions of conformal vector fields of $(\\alpha,\\beta)$-spaces in dimension $n\\ge 3$ under certain curvature conditions. In addition, we use certain conformal vector field to give a new proof to a known result on the local and global classifications for Randers metrics which are locally projectively flat and of isotropic S-curvature.", "revisions": [ { "version": "v1", "updated": "2014-04-13T09:25:19.000Z", "title": "On Conformal Vector Fields of a Class of Finsler Spaces", "comment": "16 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2016-08-27T07:13:39.000Z" } ], "analyses": { "subjects": [ "53B40", "53C60" ], "keywords": [ "finsler spaces", "characterize conformal vector fields", "curvature conditions", "isotropic s-curvature", "riemannian metric" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.3360Y" } } }