{ "id": "1404.3234", "version": "v2", "published": "2014-04-11T21:57:23.000Z", "updated": "2014-09-28T17:44:34.000Z", "title": "Equivalence of optimal $L^1$-inequalities on Riemannian Manifolds", "authors": [ "Jurandir Ceccon", "Leandro Cioletti" ], "comment": "To appear in Journal of Mathematical Analysis and Its Applications (JMAA)", "doi": "10.1016/j.jmaa.2014.09.041", "categories": [ "math.AP" ], "abstract": "Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n \\geq 2$. This paper concerns to the validity of the optimal Riemannian $L^1$-Entropy inequality \\[ {\\bf Ent}_{dv_g}(u) \\leq n \\log \\left(A_{opt} \\|D u\\|_{BV(M)} + B_{opt}\\right) \\] for all $u \\in BV(M)$ with $\\|u\\|_{L^1(M)} = 1$ and existence of extremal functions. In particular, we prove that this optimal inequality is equivalent a optimal $L^1$-Sobolev inequality obtained by Druet [6].", "revisions": [ { "version": "v1", "updated": "2014-04-11T21:57:23.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v2", "updated": "2014-09-28T17:44:34.000Z" } ], "analyses": { "keywords": [ "equivalence", "smooth compact riemannian manifold", "paper concerns", "optimal riemannian", "entropy inequality" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.3234C" } } }