{ "id": "1404.2467", "version": "v1", "published": "2014-04-09T12:49:28.000Z", "updated": "2014-04-09T12:49:28.000Z", "title": "On minimal Legendrian submanifolds of Sasaki-Einstein manifolds", "authors": [ "Simone Calamai", "David Petrecca" ], "comment": "14 pages. Comments and remarks are welcome", "categories": [ "math.DG" ], "abstract": "For a given minimal Legendrian submanifold $L$ of a Sasaki-Einstein manifold we construct two families of eigenfunctions of the Laplacian of $L$ and we give a lower bound for the dimension of the corresponding eigenspace. Moreover, in the case the lower bound is attained, we prove that $L$ is totally geodesic and a rigidity result about the ambient manifold. This is a generalization of a result for the standard Sasakian sphere done by L\\^e and Wang.", "revisions": [ { "version": "v1", "updated": "2014-04-09T12:49:28.000Z" } ], "analyses": { "subjects": [ "53C25", "53C42" ], "keywords": [ "minimal legendrian submanifold", "sasaki-einstein manifold", "lower bound", "standard sasakian sphere", "rigidity result" ], "publication": { "doi": "10.1142/S0129167X14500839" }, "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.2467C", "inspire": 1386198 } } }