{ "id": "1404.2308", "version": "v1", "published": "2014-04-08T20:59:13.000Z", "updated": "2014-04-08T20:59:13.000Z", "title": "On the Hausdorff dimension of Newhouse phenomena", "authors": [ "Pierre Berger", "Jacopo De Simoi" ], "categories": [ "math.DS" ], "abstract": "We show that at the vicinity of a generic dissipative homoclinic unfolding of a surface diffeomorphism, the Hausdorff dimension of the set of parameters for which the diffeomorphism admits infinitely many periodic sinks is at least 1/2.", "revisions": [ { "version": "v1", "updated": "2014-04-08T20:59:13.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "newhouse phenomena", "periodic sinks", "surface diffeomorphism", "parameters" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.2308B" } } }