{ "id": "1404.2232", "version": "v3", "published": "2014-04-08T17:48:45.000Z", "updated": "2014-06-13T00:22:45.000Z", "title": "Existence of a nontrivial solution for a strongly indefinite periodic Schrodinger-Poisson system", "authors": [ "Shaowei Chen", "Liqian Xiao" ], "comment": "19 pages", "categories": [ "math.AP" ], "abstract": "We consider the Schr\\\"odinger-Poisson system \\begin{eqnarray}\\left\\{\\begin{array} [c]{ll} -\\Delta u+V(x) u+|u|^{p-2}u=\\lambda \\phi u, & \\mbox{in}\\mathbb{R}^{3},\\\\ -\\Delta\\phi= u^{2}, & \\mbox{in}\\mathbb{R}^{3}. \\end{array} \\right.\\nonumber \\end{eqnarray} where $\\lambda>0$ is a parameter, $3< p<6$, $V\\in C(\\mathbb{R}^{3}) $ is $1$-periodic in $x_j$ for $j = 1,2,3$ and 0 is in a spectral gap of the operator $-\\Delta+V$. This system is strongly indefinite, i.e., the operator $-\\Delta+V$ has infinite-dimensional negative and positive spaces and it has a competitive interplay of the nonlinearities $|u|^{p-2}u$ and $\\lambda \\phi u$. Moreover, the functional corresponding to this system does not satisfy the Palai-Smale condition. Using a new infinite-dimensional linking theorem, we prove that, for sufficiently small $\\lambda>0,$ this system has a nontrivial solution.", "revisions": [ { "version": "v3", "updated": "2014-06-13T00:22:45.000Z" } ], "analyses": { "keywords": [ "strongly indefinite periodic schrodinger-poisson system", "nontrivial solution", "spectral gap", "palai-smale condition", "infinite-dimensional linking theorem" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.2232C" } } }