{ "id": "1404.2121", "version": "v1", "published": "2014-04-08T13:28:20.000Z", "updated": "2014-04-08T13:28:20.000Z", "title": "$G$-martingale representation in the $G$-L'evy setting", "authors": [ "Krzysztof Paczka" ], "categories": [ "math.PR" ], "abstract": "In this paper we give the decomposition of a martingale under the sublinear expectation associated with a $G$-L'evy process X with finite activity and without drift. We prove that such a martingale consists of an Ito integral w.r.t. continuous part of a $G$-L'evy process, compensated Ito-L'evy integral w.r.t. jump measure associated with $X$ and a non-increasing continuous $G$-martingale starting at 0.", "revisions": [ { "version": "v1", "updated": "2014-04-08T13:28:20.000Z" } ], "analyses": { "subjects": [ "60G44", "60G51", "60H05" ], "keywords": [ "martingale representation", "levy setting", "levy process", "jump measure", "martingale consists" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.2121P" } } }