{ "id": "1404.2096", "version": "v1", "published": "2014-04-08T11:54:40.000Z", "updated": "2014-04-08T11:54:40.000Z", "title": "On central limit theorems in the random connection model", "authors": [ "Tim van de Brug", "Ronald Meester" ], "comment": "17 pages, 3 figures", "journal": "Phys. A 332 (2004), no. 1-4, 263-278", "doi": "10.1016/j.physa.2003.10.003", "categories": [ "math.PR" ], "abstract": "Consider a sequence of Poisson random connection models (X_n,lambda_n,g_n) on R^d, where lambda_n / n^d \\to lambda > 0 and g_n(x) = g(nx) for some non-increasing, integrable connection function g. Let I_n(g) be the number of isolated vertices of (X_n,lambda_n,g_n) in some bounded Borel set K, where K has non-empty interior and boundary of Lebesgue measure zero. Roy and Sarkar [Phys. A 318 (2003), no. 1-2, 230-242] claim that (I_n(g) - E I_n(g)) / \\sqrt Var I_n(g) converges in distribution to a standard normal random variable. However, their proof has errors. We correct their proof and extend the result to larger components when the connection function g has bounded support.", "revisions": [ { "version": "v1", "updated": "2014-04-08T11:54:40.000Z" } ], "analyses": { "subjects": [ "60K35" ], "keywords": [ "central limit theorems", "poisson random connection models", "lebesgue measure zero", "standard normal random variable", "integrable connection function" ], "tags": [ "journal article" ], "publication": { "journal": "Physica A Statistical Mechanics and its Applications", "year": 2004, "month": "Feb", "volume": 332, "pages": 263 }, "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2004PhyA..332..263V" } } }