{ "id": "1404.1656", "version": "v2", "published": "2014-04-07T04:56:29.000Z", "updated": "2014-08-01T11:11:00.000Z", "title": "Borel Cantelli Lemmas and Extreme Value Theory for Geometric Lorenz Models", "authors": [ "Licheng Zhang" ], "categories": [ "math.DS" ], "abstract": "We establish dynamical Borel-Cantelli lemmas for nested balls and rectangles centered at generic points in the setting of geometric Lorenz maps. We also establish extreme value statistics for observations maximized at generic points for geometric Lorenz maps and the associated flow.", "revisions": [ { "version": "v2", "updated": "2014-08-01T11:11:00.000Z" } ], "analyses": { "keywords": [ "extreme value theory", "borel cantelli lemmas", "geometric lorenz models", "geometric lorenz maps", "generic points" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.1656Z" } } }