{ "id": "1404.1551", "version": "v1", "published": "2014-04-06T07:12:58.000Z", "updated": "2014-04-06T07:12:58.000Z", "title": "On the existence of orthogonal polynomials for oscillatory weights on a bounded interval", "authors": [ "Hassan Majidian" ], "comment": "7 pages, 1 figure", "categories": [ "math.NA" ], "abstract": "It is shown that the orthogonal polynomials, corresponding to the oscillatory weight $e^{\\im\\omega x}$, exists if $\\omega$ is a transcendental number and $\\tan\\omega/\\omega\\in\\Q$. Also, it is proved that such orthogonal polynomials exist for almost every $\\omega>0$, and the roots are all simple if $\\omega>0$ is either small enough or large enough.", "revisions": [ { "version": "v1", "updated": "2014-04-06T07:12:58.000Z" } ], "analyses": { "subjects": [ "65D32", "65R10" ], "keywords": [ "orthogonal polynomials", "oscillatory weight", "bounded interval", "transcendental number" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.1551M" } } }