{ "id": "1404.1185", "version": "v1", "published": "2014-04-04T08:52:47.000Z", "updated": "2014-04-04T08:52:47.000Z", "title": "Boundaries and polyhedral Banach spaces", "authors": [ "Vladimir P Fonf", "Richard J Smith", "Stanimir Troyanski" ], "categories": [ "math.FA" ], "abstract": "We show that if $X$ and $Y$ are Banach spaces, where $Y$ is separable and polyhedral, and if $T:X \\to Y$ is a bounded linear operator such that $T^*(Y^*)$ contains a boundary $B$ of $X$, then $X$ is separable and isomorphic to a polyhedral space. Some corollaries of this result are presented.", "revisions": [ { "version": "v1", "updated": "2014-04-04T08:52:47.000Z" } ], "analyses": { "subjects": [ "46B20" ], "keywords": [ "polyhedral banach spaces", "polyhedral space", "bounded linear operator", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.1185F" } } }