{ "id": "1404.1060", "version": "v2", "published": "2014-04-03T19:40:01.000Z", "updated": "2014-04-17T05:14:41.000Z", "title": "On the Diophantine equation $pq=x^2+ny^2$", "authors": [ "Ja Kyung Koo", "Dong Hwa Shin" ], "categories": [ "math.NT" ], "abstract": "Let $n$ be a positive integer. We discuss pairs of distinct odd primes $p$ and $q$ not dividing $n$ for which the Diophantine equations $pq=x^2+ny^2$ have integer solutions in $x$ and $y$. As its examples we classify all such pairs of $p$ and $q$ when $n=5$ and $14$.", "revisions": [ { "version": "v2", "updated": "2014-04-17T05:14:41.000Z" } ], "analyses": { "subjects": [ "11E25", "11E16" ], "keywords": [ "diophantine equation", "distinct odd primes", "integer solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.1060K" } } }