{ "id": "1404.0563", "version": "v1", "published": "2014-04-02T14:22:13.000Z", "updated": "2014-04-02T14:22:13.000Z", "title": "Moment bounds for dependent sequences in smooth Banach spaces", "authors": [ "Jérôme Dedecker", "Florence Merlevède" ], "comment": "27 pages", "categories": [ "math.PR" ], "abstract": "We prove a Marcinkiewicz-Zygmund type inequality for random variables taking values in a smooth Banach space. Next, we obtain some sharp concentration inequalities for the empirical measure of $\\{T, T^2, \\cdots, T^n\\}$, on a class of smooth functions, when $T$ belongs to a class of nonuniformly expanding maps of the unit interval.", "revisions": [ { "version": "v1", "updated": "2014-04-02T14:22:13.000Z" } ], "analyses": { "subjects": [ "60E15", "60G48", "37E05" ], "keywords": [ "smooth banach space", "dependent sequences", "moment bounds", "sharp concentration inequalities", "marcinkiewicz-zygmund type inequality" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.0563D" } } }