{ "id": "1404.0496", "version": "v2", "published": "2014-04-02T09:17:57.000Z", "updated": "2014-07-18T11:20:41.000Z", "title": "A Common Generalization of Dirac's two Theorems", "authors": [ "Zh. G. Nikoghosyan" ], "comment": "7 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a 2-connected graph of order $n$ and let $c$ be the circumference - the order of a longest cycle in $G$. In this paper we present a sharp lower bound for the circumference based on minimum degree $\\delta$ and $p$ - the order of a longest path in $G$. This is a common generalization of two earlier classical results for 2-connected graphs due to Dirac: (i) $c\\ge \\min\\{n,2\\delta\\}$; and (ii) $c\\ge\\sqrt{2p}$. Moreover, the result is stronger than (ii).", "revisions": [ { "version": "v2", "updated": "2014-07-18T11:20:41.000Z" } ], "analyses": { "keywords": [ "common generalization", "sharp lower bound", "longest cycle", "circumference", "minimum degree" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.0496N" } } }