{ "id": "1404.0399", "version": "v2", "published": "2014-04-01T21:11:30.000Z", "updated": "2014-11-29T00:20:55.000Z", "title": "On the distribution of Atkin and Elkies primes for reductions of elliptic curves on average", "authors": [ "Igor E. Shparlinski", "Andrew V. Sutherland" ], "comment": "20 pages", "categories": [ "math.NT" ], "abstract": "For an elliptic curve E/Q without complex multiplication we study the distribution of Atkin and Elkies primes l, on average, over all good reductions of E modulo primes p. We show that, under the Generalized Riemann Hypothesis, for almost all primes p there are enough small Elkies primes l to ensure that the Schoof-Elkies-Atkin point-counting algorithm runs in (log p)^(4+o(1)) expected time.", "revisions": [ { "version": "v1", "updated": "2014-04-01T21:11:30.000Z", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-11-29T00:20:55.000Z" } ], "analyses": { "subjects": [ "11Y16", "11G05", "11G07", "11L40", "11Y16" ], "keywords": [ "distribution", "reductions", "elliptic curve e/q", "small elkies primes", "schoof-elkies-atkin point-counting algorithm runs" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1404.0399S" } } }