{ "id": "1403.7977", "version": "v1", "published": "2014-03-31T12:59:02.000Z", "updated": "2014-03-31T12:59:02.000Z", "title": "Using a Galois connection to compute character degrees", "authors": [ "Mark L. Lewis", "John K. McVey" ], "categories": [ "math.GR" ], "abstract": "Given a Mersenne prime $q$ and a positive even integer $e$, let $F$ and $E$ be the fields of orders $q$ and $q^e$ respectively. Let $C$ be a cyclic subgroup of $E^\\times$ whose index in $E^\\times$ is divisible only by primes dividing $q - 1$. We compute the character degrees of the group $C \\rtimes {\\rm Gal} (E/F)$ by using the Galois connection between the subfields of $E$ and the Galois group ${\\rm Gal} (E/F)$.", "revisions": [ { "version": "v1", "updated": "2014-03-31T12:59:02.000Z" } ], "analyses": { "subjects": [ "20C15" ], "keywords": [ "character degrees", "galois connection", "mersenne prime", "galois group" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7977L" } } }