{ "id": "1403.7506", "version": "v1", "published": "2014-03-28T19:31:42.000Z", "updated": "2014-03-28T19:31:42.000Z", "title": "Involution Statistics in Finite Coxeter Groups", "authors": [ "Sarah B. Hart", "Peter J. Rowley" ], "categories": [ "math.CO" ], "abstract": "Let $W$ be a finite Coxeter group and $X$ a subset of $W$. The length polynomial $L_{W,X}(t)$ is defined by $L_{W,X}(t) = \\sum_{x \\in X} t^{\\ell(x)}$, where $\\ell$ is the length function on $W$. In this article we derive expressions for the length polynomial where $X$ is any conjugacy class of involutions, or the set of all involutions, in any finite Coxeter group $W$. In particular, these results correct errors in the paper \"Permutation statistics on involutions\", W.M.B. Dukes., European J. Combin. 28 (2007), 186--198. for the involution length polynomials of Coxeter groups of type $B_n$ and $D_n$. Moreover, we give a counterexample to a unimodality conjecture of Dukes.", "revisions": [ { "version": "v1", "updated": "2014-03-28T19:31:42.000Z" } ], "analyses": { "keywords": [ "finite coxeter group", "involution statistics", "results correct errors", "involution length polynomials", "conjugacy class" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7506H" } } }