{ "id": "1403.7427", "version": "v1", "published": "2014-03-28T16:02:56.000Z", "updated": "2014-03-28T16:02:56.000Z", "title": "Robust optimal solutions in interval linear programming with forall-exists quantifiers", "authors": [ "Milan Hladík" ], "categories": [ "math.OC" ], "abstract": "We introduce a novel kind of robustness in linear programming. A solution x* is called robust optimal if for all realizations of objective functions coefficients and constraint matrix entries from given interval domains there are appropriate choices of the right-hand side entries from their interval domains such that x* remains optimal. we propose a method to check for robustness of a given point, and also recommend how a suitable candidate can be found. We also discuss topological properties of the robust optimal solution set. We illustrate applicability of our concept in a transportation problem.", "revisions": [ { "version": "v1", "updated": "2014-03-28T16:02:56.000Z" } ], "analyses": { "subjects": [ "90C05", "90C31" ], "keywords": [ "interval linear programming", "forall-exists quantifiers", "robust optimal solution set", "interval domains", "right-hand side entries" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7427H" } } }