{ "id": "1403.7399", "version": "v3", "published": "2014-03-28T14:48:16.000Z", "updated": "2015-08-16T09:37:19.000Z", "title": "Mapping Class Groups of Trigonal Loci", "authors": [ "Michele Bolognesi", "Michael Lönne" ], "comment": "To appear on Selecta Math", "categories": [ "math.AG" ], "abstract": "In this paper we study the topology of the stack $\\mathcal{T}_g$ of smooth trigonal curves of genus g, over the complex field. We make use of a construction by the first named author and Vistoli, that describes $\\mathcal{T}_g$ as a quotient stack of the complement of the discriminant. This allows us to use techniques developed by the second named author to give presentations of the orbifold fundamental group of $\\mathcal{T}_g$, of its substrata with prescribed Maroni invariant and describe their relation with the mapping class group $\\mathcal{M}ap_g$ of Riemann surfaces of genus g.", "revisions": [ { "version": "v2", "updated": "2014-05-10T21:28:45.000Z", "comment": "Preliminary version, comments welcome", "journal": null, "doi": null }, { "version": "v3", "updated": "2015-08-16T09:37:19.000Z" } ], "analyses": { "keywords": [ "mapping class group", "trigonal loci", "orbifold fundamental group", "smooth trigonal curves", "riemann surfaces" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7399B" } } }