{ "id": "1403.7158", "version": "v2", "published": "2014-03-27T18:13:50.000Z", "updated": "2014-05-07T19:33:15.000Z", "title": "Affine diameters of convex bodies", "authors": [ "Imre Barany", "Daniel Hug", "Rolf Schneider" ], "comment": "Minor corrections", "categories": [ "math.MG" ], "abstract": "We prove sharp inequalities for the average number of affine diameters through the points of a convex body $K$ in ${\\mathbb R}^n$. These inequalities hold if $K$ is either a polytope or of dimension two. An example shows that the proof given in the latter case does not extend to higher dimensions.", "revisions": [ { "version": "v2", "updated": "2014-05-07T19:33:15.000Z" } ], "analyses": { "subjects": [ "52A20", "52A40" ], "keywords": [ "convex body", "affine diameters", "higher dimensions", "average number", "inequalities hold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7158B" } } }