{ "id": "1403.7079", "version": "v1", "published": "2014-03-27T15:26:11.000Z", "updated": "2014-03-27T15:26:11.000Z", "title": "On the non-vanishing of Dirichlet $L$-functions at the central point", "authors": [ "Daniel Fiorilli" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "We investigate the consequences of natural conjectures of Montgomery type on the non-vanishing of Dirichlet $L$-functions at the central point. We first justify these conjectures using probabilistic arguments. We then show using a result of Bombieri, Friedlander and Iwaniec and a result of the author that they imply that almost all Dirichlet $L$-functions do not vanish at the central point. We also deduce a quantitative upper bound for the proportion of Dirichlet $L$-functions for which $L(\\frac 12,\\chi)=0$.", "revisions": [ { "version": "v1", "updated": "2014-03-27T15:26:11.000Z" } ], "analyses": { "subjects": [ "11M20", "11M26", "11N13" ], "keywords": [ "central point", "non-vanishing", "montgomery type", "natural conjectures", "probabilistic arguments" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.7079F" } } }