{ "id": "1403.6580", "version": "v1", "published": "2014-03-26T07:33:28.000Z", "updated": "2014-03-26T07:33:28.000Z", "title": "Cut Finite Element Methods for Coupled Bulk-Surface Problems", "authors": [ "Erik Burman", "Peter Hansbo", "Mats G. Larson", "Sara Zahedi" ], "categories": [ "math.NA" ], "abstract": "We develop a cut finite element method for a second order elliptic coupled bulk-surface model problem. We prove a priori estimates for the energy and $L^2$ norms of the error. Using stabilization terms we show that the resulting algebraic system of equations has a similar condition number as a standard fitted finite element method. Finally, we present a numerical example illustrating the accuracy and the robustness of our approach.", "revisions": [ { "version": "v1", "updated": "2014-03-26T07:33:28.000Z" } ], "analyses": { "subjects": [ "65N30" ], "keywords": [ "cut finite element method", "coupled bulk-surface problems", "fitted finite element method", "elliptic coupled bulk-surface model", "order elliptic coupled bulk-surface" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.6580B" } } }