{ "id": "1403.6215", "version": "v3", "published": "2014-03-25T02:51:54.000Z", "updated": "2016-11-27T00:48:51.000Z", "title": "Explicit Koszul-dualizing bimodules in bordered Heegaard Floer homology", "authors": [ "Bohua Zhan" ], "comment": "50 pages", "journal": "Algebr. Geom. Topol. 16 (2016) 231-266", "doi": "10.2140/agt.2016.16.231", "categories": [ "math.GT" ], "abstract": "We give a combinatorial proof of the quasi-invertibility of $\\widehat{CFDD}(\\mathbb{I}_\\mathcal{Z})$ in bordered Heegaard Floer homology, which implies a Koszul self-duality on the dg-algebra $\\mathcal{A}(\\mathcal{Z})$, for each pointed matched circle $\\mathcal{Z}$. This is done by giving an explicit description of a rank 1 model for $\\widehat{CFAA}(\\mathbb{I}_\\mathcal{Z})$, the quasi-inverse of $\\widehat{CFDD}(\\mathbb{I}_\\mathcal{Z})$. This description is obtained by applying homological perturbation theory to a larger, previously known model of $\\widehat{CFAA}(\\mathbb{I}_\\mathcal{Z})$.", "revisions": [ { "version": "v2", "updated": "2014-05-28T01:02:26.000Z", "comment": "49 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2016-11-27T00:48:51.000Z" } ], "analyses": { "subjects": [ "57R58", "57R56" ], "keywords": [ "bordered heegaard floer homology", "explicit koszul-dualizing bimodules", "combinatorial proof", "koszul self-duality", "applying homological perturbation theory" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 50, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.6215Z" } } }