{ "id": "1403.6012", "version": "v2", "published": "2014-03-24T15:47:58.000Z", "updated": "2014-06-01T03:08:11.000Z", "title": "New results on permutation polynomials over finite fields", "authors": [ "Xiaoer Qin", "Guoyou Qian", "Shaofang Hong" ], "comment": "11 pages. To appear in International Journal of Number Theory", "categories": [ "math.NT" ], "abstract": "In this paper, we get several new results on permutation polynomials over finite fields. First, by using the linear translator, we construct permutation polynomials of the forms $L(x)+\\sum_{j=1}^k \\gamma_jh_j(f_j(x))$ and $x+\\sum_{j=1}^k\\gamma_jf_j(x)$. These generalize the results obtained by Kyureghyan in 2011. Consequently, we characterize permutation polynomials of the form $L(x)+\\sum_{i=1} ^l\\gamma_i {\\rm Tr}_{{\\bf F}_{q^m}/{\\bf F}_{q}}(h_i(x))$, which extends a theorem of Charpin and Kyureghyan obtained in 2009.", "revisions": [ { "version": "v2", "updated": "2014-06-01T03:08:11.000Z" } ], "analyses": { "keywords": [ "finite fields", "construct permutation polynomials", "kyureghyan", "characterize permutation polynomials", "linear translator" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.6012Q" } } }