{ "id": "1403.5798", "version": "v1", "published": "2014-03-23T20:35:07.000Z", "updated": "2014-03-23T20:35:07.000Z", "title": "Spectral asymptotics for $δ'$ interaction supported by a infinite curve", "authors": [ "Michal Jex" ], "categories": [ "math-ph", "math.MP", "math.SP", "quant-ph" ], "abstract": "We consider a generalized Schr\\\"odinger operator in $L^2(\\mathbb R^2)$ describing an attractive $\\delta'$ interaction in a strong coupling limit. $\\delta'$ interaction is characterized by a coupling parameter $\\beta$ and it is supported by a $C^4$-smooth infinite asymptotically straight curve $\\Gamma$ without self-intersections. It is shown that in the strong coupling limit, $\\beta\\to 0_+$, the eigenvalues for a non-straight curve behave as $-\\frac{4}{\\beta^2} +\\mu_j+\\mathcal O(\\beta|\\ln\\beta|)$, where $\\mu_j$ is the $j$-th eigenvalue of the Schr\\\"odinger operator on $L^2(\\mathbb R)$ with the potential $-\\frac14 \\gamma^2$ where $\\gamma$ is the signed curvature of $\\Gamma$.", "revisions": [ { "version": "v1", "updated": "2014-03-23T20:35:07.000Z" } ], "analyses": { "keywords": [ "spectral asymptotics", "infinite curve", "interaction", "strong coupling limit", "smooth infinite asymptotically straight curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.5798J" } } }