{ "id": "1403.5674", "version": "v1", "published": "2014-03-22T15:45:50.000Z", "updated": "2014-03-22T15:45:50.000Z", "title": "Convergence of the regularized short pulse equation to the short pulse one", "authors": [ "Giuseppe Maria Coclite", "Lorenzo di Ruvo" ], "categories": [ "math.AP" ], "abstract": "We consider the regularized short-pulse equation, which contains nonlinear dis- persive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the short-pulse one. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the Lp setting.", "revisions": [ { "version": "v1", "updated": "2014-03-22T15:45:50.000Z" } ], "analyses": { "keywords": [ "regularized short pulse equation", "convergence", "diffusion parameter tends", "regularized short-pulse equation", "compensated compactness method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.5674C" } } }