{ "id": "1403.5552", "version": "v2", "published": "2014-03-21T19:38:29.000Z", "updated": "2014-08-07T19:32:36.000Z", "title": "Boundedness of Laplacian eigenfunctions on manifolds of infinite volume", "authors": [ "Leonardo Bonorino", "PatrĂ­cia Klaser", "Miriam Telichevesky" ], "comment": "13 pages; change in the title; change in the abstract; improvement in the introduction; added some details in the proof of Theorem 2.2", "categories": [ "math.DG", "math.AP" ], "abstract": "In a Hadamard manifold $M$, it is proved that if $u$ is a $\\lambda$-eigenfunction of the Laplacian that belongs to $L^p(M)$ for some $p \\ge 2$, then $u$ is bounded and $\\|u\\|_{\\infty} \\le C \\|u\\|_p,$ where $C$ depends only on $p$, $\\lambda$ and on the dimension of $M$. This result is obtained in the more general context of a complete Riemannian manifold endowed with an isoperimetric function $H$ satisfying some integrability condition. In this case, the constant $C$ depends on $p,\\lambda$ and $H.$", "revisions": [ { "version": "v2", "updated": "2014-08-07T19:32:36.000Z" } ], "analyses": { "subjects": [ "58J50", "58J05" ], "keywords": [ "infinite volume", "laplacian eigenfunctions", "boundedness", "general context", "hadamard manifold" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.5552B" } } }