{ "id": "1403.5413", "version": "v2", "published": "2014-03-21T10:24:01.000Z", "updated": "2015-03-05T19:59:10.000Z", "title": "On the existence of the Riemann-Stieltjes integral", "authors": [ "Rafał M. Łochowski" ], "comment": "More comprehensive paper with the sam results is \"Integration of rough paths - the truncated variation approach, arXiv:1409.3757\"", "categories": [ "math.CA" ], "abstract": "The purpose of this note is a new proof of Young's theorem on the existence of the Riemann-Stieltjes integral when the integrand and integrator have possibly unbounded variation, but they have finite $p-$variation and $q-$variation respectively, where $p>1,$ $q>1$ and $p^{-1}+q^{-1}>1.$ Our proof will follow easily from a more general theorem formulated in terms of a functional called truncated variation.", "revisions": [ { "version": "v1", "updated": "2014-03-21T10:24:01.000Z", "comment": null, "journal": null, "doi": null, "authors": [ "Rafał M. \\Lochowski" ] }, { "version": "v2", "updated": "2015-03-05T19:59:10.000Z" } ], "analyses": { "subjects": [ "26A42", "26A45", "34L30" ], "keywords": [ "riemann-stieltjes integral", "youngs theorem", "truncated variation", "possibly unbounded variation", "general theorem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.5413L" } } }