{ "id": "1403.4875", "version": "v2", "published": "2014-03-19T16:40:25.000Z", "updated": "2014-04-22T16:12:42.000Z", "title": "A theorem of Mœglin-Waldspurger for covering groups", "authors": [ "Shiv Prakash Patel" ], "comment": "13 pages", "categories": [ "math.RT" ], "abstract": "Let $E$ be a non-Archimedian local field of characteristic zero and residue characteristic $p$. Let ${\\bf G}$ be a connected reductive group defined over $E$ and $\\pi$ an irreducible admissible representation of $G={\\bf G}(E)$. A result of C. M{\\oe}glin and J.-L. Waldspurger (for $p \\neq 2$) and S. Varma (for $p=2$) states that the leading coefficient in the character expansion of $\\pi$ at the identity element of ${\\bf G}(E)$ gives the dimension of a certain space of degenerate Whittaker forms. In this paper we generalize this result of M{\\oe}glin-Waldspurger to the setting of covering groups $\\tilde{G}$ of $G$.", "revisions": [ { "version": "v2", "updated": "2014-04-22T16:12:42.000Z" } ], "analyses": { "subjects": [ "22E50", "11F70", "11S37" ], "keywords": [ "covering groups", "mœglin-waldspurger", "non-archimedian local field", "degenerate whittaker forms", "characteristic zero" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.4875P" } } }