{ "id": "1403.4709", "version": "v1", "published": "2014-03-19T07:02:57.000Z", "updated": "2014-03-19T07:02:57.000Z", "title": "Divisors of Fourier coefficients of modular forms", "authors": [ "Sanoli Gun", "M. Ram Murty" ], "comment": "New York Journal of Mathematics, 2014", "categories": [ "math.NT" ], "abstract": "Let $d(n)$ denote the number of divisors of $n$. In this paper, we study the average value of $d(a(p))$, where $p$ is a prime and $a(p)$ is the $p$-th Fourier coefficient of a normalized Hecke eigenform of weight $k \\ge 2$ for $\\Gamma_0(N)$ having rational integer Fourier coefficients.", "revisions": [ { "version": "v1", "updated": "2014-03-19T07:02:57.000Z" } ], "analyses": { "subjects": [ "11F30", "11N37" ], "keywords": [ "modular forms", "rational integer fourier coefficients", "th fourier coefficient", "average value", "normalized hecke eigenform" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.4709G" } } }