{ "id": "1403.3837", "version": "v2", "published": "2014-03-15T18:24:51.000Z", "updated": "2014-07-30T09:33:42.000Z", "title": "A density Corrádi-Hajnal Theorem", "authors": [ "Peter Allen", "Julia Böttcher", "Jan Hladký", "Diana Piguet" ], "comment": "41 pages (including 11 pages of appendix), 4 figures, 2 tables", "categories": [ "math.CO" ], "abstract": "We find, for all sufficiently large $n$ and each $k$, the maximum number of edges in an $n$-vertex graph which does not contain $k+1$ vertex-disjoint triangles. This extends a result of Moon [Canad. J. Math. 20 (1968), 96-102] which is in turn an extension of Mantel's Theorem. Our result can also be viewed as a density version of the Corradi-Hajnal Theorem.", "revisions": [ { "version": "v2", "updated": "2014-07-30T09:33:42.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "density corrádi-hajnal theorem", "density version", "mantels theorem", "maximum number", "vertex-disjoint triangles" ], "note": { "typesetting": "TeX", "pages": 41, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.3837A" } } }