{ "id": "1403.3453", "version": "v2", "published": "2014-03-13T22:53:05.000Z", "updated": "2014-07-15T18:29:32.000Z", "title": "Casimir energy of smooth compact surfaces", "authors": [ "Joseph P. Straley", "Eugene B. Kolomeisky" ], "comment": "9 pages, 4 figures, minor changes, published version", "journal": "Phys. Rev. A 90, 012514 (2014)", "doi": "10.1103/PhysRevA.90.012514", "categories": [ "cond-mat.stat-mech", "hep-th" ], "abstract": "We discuss the formalism of Balian and Duplantier for the calculation of the Casimir energy for an arbitrary smooth compact surface, and use it to give some examples: a finite cylinder with hemispherical caps, the torus, ellipsoid of revolution, a \"cube\" with rounded corners and edges, and a \"drum\" made of disks and part of a torus. We propose a model function which approximately captures the shape dependence of the Casimir energy.", "revisions": [ { "version": "v2", "updated": "2014-07-15T18:29:32.000Z" } ], "analyses": { "subjects": [ "42.50.Pq", "11.10.Gh", "03.70.+k", "31.30.jh" ], "keywords": [ "casimir energy", "arbitrary smooth compact surface", "finite cylinder", "model function", "shape dependence" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review A", "year": 2014, "month": "Jul", "volume": 90, "number": 1, "pages": "012514" }, "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "inspire": 1285970, "adsabs": "2014PhRvA..90a2514S" } } }