{ "id": "1403.2361", "version": "v2", "published": "2014-03-10T19:37:49.000Z", "updated": "2014-04-06T07:59:59.000Z", "title": "On the Laplace transform of the Fréchet distribution", "authors": [ "K. A. Penson", "K. Górska" ], "comment": "10 pages, 4 figures; one reference added", "categories": [ "math.PR", "math.CA" ], "abstract": "We calculate exactly the Laplace transform of the Fr\\'{e}chet distribution in the form $\\gamma x^{-(1+\\gamma)} \\exp(-x^{-\\gamma})$, $\\gamma > 0$, $0 \\leq x < \\infty$, for arbitrary rational values of the shape parameter $\\gamma$, i.e. for $\\gamma = l/k$ with $l, k = 1,2, \\ldots$. The method employs the inverse Mellin transform. The closed form expressions are obtained in terms of Meijer G functions and their graphical illustrations are provided. A rescaled Fr\\'{e}chet distribution serves as a kernel of Fr\\'{e}chet integral transform. It turns out that the Fr\\'{e}chet transform of one-sided L\\'{e}vy law reproduces the Fr\\'{e}chet distribution.", "revisions": [ { "version": "v2", "updated": "2014-04-06T07:59:59.000Z" } ], "analyses": { "keywords": [ "laplace transform", "fréchet distribution", "inverse mellin transform", "arbitrary rational values", "closed form expressions" ], "tags": [ "journal article" ], "publication": { "doi": "10.1063/1.4893338", "journal": "Journal of Mathematical Physics", "year": 2014, "month": "Sep", "volume": 55, "number": 9, "pages": "093501" }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014JMP....55i3501P" } } }