{ "id": "1403.2344", "version": "v1", "published": "2014-03-10T18:57:13.000Z", "updated": "2014-03-10T18:57:13.000Z", "title": "Intersecting generalised permutations", "authors": [ "Peter Borg", "Karen Meagher" ], "comment": "8 pages, submitted", "categories": [ "math.CO" ], "abstract": "For any positive integers $k,r,n$ with $r \\leq \\min\\{k,n\\}$, let $\\mathcal{P}_{k,r,n}$ be the family of all sets $\\{(x_1,y_1), \\dots, (x_r,y_r)\\}$ such that $x_1, \\dots, x_r$ are distinct elements of $[k] = \\{1, \\dots, k\\}$ and $y_1, \\dots, y_r$ are distinct elements of $[n]$. The families $\\mathcal{P}_{n,n,n}$ and $\\mathcal{P}_{n,r,n}$ describe permutations of $[n]$ and $r$-partial permutations of $[n]$, respectively. If $k \\leq n$, then $\\mathcal{P}_{k,k,n}$ describes permutations of $k$-element subsets of $[n]$. A family $\\mathcal{A}$ of sets is said to be intersecting if every two members of $\\mathcal{A}$ intersect. In this note we use Katona's elegant cycle method to show that a number of important Erd\\H{o}s-Ko-Rado-type results by various authors generalise as follows: the size of any intersecting subfamily $\\mathcal{A}$ of $\\mathcal{P}_{k,r,n}$ is at most ${k-1 \\choose r-1}\\frac{(n-1)!}{(n-r)!}$, and the bound is attained if and only if $\\mathcal{A} = \\{A \\in \\mathcal{P}_{k,r,n} \\colon (a,b) \\in A\\}$ for some $a \\in [k]$ and $b \\in [n]$.", "revisions": [ { "version": "v1", "updated": "2014-03-10T18:57:13.000Z" } ], "analyses": { "subjects": [ "05D05", "20B30" ], "keywords": [ "intersecting generalised permutations", "distinct elements", "katonas elegant cycle method", "partial permutations", "authors generalise" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.2344B" } } }