{ "id": "1403.1999", "version": "v2", "published": "2014-03-08T19:14:18.000Z", "updated": "2014-04-02T14:03:28.000Z", "title": "On the domination polynomials of cactus chains", "authors": [ "Saeid Alikhani", "Somayeh Jahari", "Mohammad Mehryar" ], "comment": "13 pages", "categories": [ "math.CO" ], "abstract": "Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=\\sum_{i=\\gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $\\gamma(G)$ is the domination number of $G$. In this paper we consider cactus chains with triangular and square blocks and study their domination polynomials.", "revisions": [ { "version": "v2", "updated": "2014-04-02T14:03:28.000Z" } ], "analyses": { "subjects": [ "05C60", "05C69" ], "keywords": [ "domination polynomial", "cactus chains", "domination number", "square blocks" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.1999A" } } }