{ "id": "1403.1916", "version": "v1", "published": "2014-03-08T01:46:59.000Z", "updated": "2014-03-08T01:46:59.000Z", "title": "On Zero-free Intervals of Flow Polynomials", "authors": [ "Fengming Dong" ], "comment": "26 pages, 7 figures", "categories": [ "math.CO" ], "abstract": "This article studies real roots of the flow polynomial $F(G,\\lambda)$ of a bridgeless graph $G$. For any integer $k\\ge 0$, let $\\xi_k$ be the supremum in $(1,2]$ such that $F(G,\\lambda)$ has no real roots in $(1,\\xi_k)$ for all graphs $G$ with $|W(G)|\\le k$, where $W(G)$ is the set of vertices in $G$ of degrees larger than $3$. We prove that $\\xi_k$ can be determined by considering a finite set of graphs and show that $\\xi_k=2$ for $k\\le 2$, $\\xi_3=1.430\\cdots$, $\\xi_4=1.361\\cdots$ and $\\xi_5=1.317\\cdots$. We also prove that for any bridgeless graph $G=(V,E)$, if all roots of $F(G,\\lambda)$ are real but some of these roots are not in the set $\\{1,2,3\\}$, then $|E|\\ge |V|+17$ and $F(G,\\lambda)$ has at least 9 real roots in $(1,2)$.", "revisions": [ { "version": "v1", "updated": "2014-03-08T01:46:59.000Z" } ], "analyses": { "subjects": [ "05C15" ], "keywords": [ "flow polynomial", "zero-free intervals", "article studies real roots", "bridgeless graph", "degrees larger" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.1916D" } } }