{ "id": "1403.1805", "version": "v2", "published": "2014-03-07T16:54:58.000Z", "updated": "2014-08-20T12:43:02.000Z", "title": "The Universal Theory of First Order Algebras and Various Reducts", "authors": [ "Lawrence Valby" ], "comment": "28 pages", "categories": [ "math.LO" ], "abstract": "First order formulas in a finite relational signature can be considered as operations on the finitary relations of an underlying set, giving rise to multisorted algebras we call first order algebras. We present universal axioms so that an algebra satisfies the axioms iff it embeds into a first order algebra. Importantly, our argument is modular and also works for, e.g., the positive existential algebras (where we restrict attention to the positive existential formulas) and the quantifier-free algebras. We also explain the relationship to theories, and indicate how to add in function symbols.", "revisions": [ { "version": "v1", "updated": "2014-03-07T16:54:58.000Z", "comment": "26 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-08-20T12:43:02.000Z" } ], "analyses": { "keywords": [ "first order algebra", "universal theory", "finite relational signature", "first order formulas", "quantifier-free algebras" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.1805V" } } }