{ "id": "1403.1673", "version": "v2", "published": "2014-03-07T07:23:16.000Z", "updated": "2014-08-01T12:32:51.000Z", "title": "An infinite family of multiplicatively independent bases of number systems in cyclotomic number fields", "authors": [ "Manfred Madritsch", "Volker Ziegler" ], "categories": [ "math.NT" ], "abstract": "Let $\\zeta_k$ be a $k$-th primitive root of unity, $m\\geq\\phi(k)+1$ an integer and $\\Phi_k(X)\\in\\mathbb Z [X]$ the $k$-th cyclotomic polynomial. In this paper we show that the pair $(-m+\\zeta_k,\\mathcal N)$ is a canonical number system, with $\\mathcal N=\\{0,1,\\dots,|\\Phi_k(m)|\\}$. Moreover we also discuss whether the two bases $-m+\\zeta_k$ and $-n+\\zeta_k$ are multiplicatively independent for positive integers $m$ and $n$ and $k$ fixed.", "revisions": [ { "version": "v2", "updated": "2014-08-01T12:32:51.000Z" } ], "analyses": { "subjects": [ "11A63", "11D61", "11D41" ], "keywords": [ "cyclotomic number fields", "multiplicatively independent bases", "infinite family", "th cyclotomic polynomial", "canonical number system" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.1673M" } } }