{ "id": "1403.1538", "version": "v3", "published": "2014-03-06T19:33:13.000Z", "updated": "2014-04-08T13:57:27.000Z", "title": "Energy estimates for minimizers to a class of elliptic systems of Allen-Cahn type and the Liouville property", "authors": [ "Christos Sourdis" ], "categories": [ "math.AP" ], "abstract": "We prove a theorem for the growth of the energy of bounded, globally minimizing solutions to a class of semilinear elliptic systems of the form $\\Delta u=\\nabla W(u)$, $x\\in \\mathbb{R}^n$, $n\\geq 2$, with $W:\\mathbb{R}^m\\to \\mathbb{R}$, $m\\geq 1$, nonnegative and vanishing at exactly one point (at least in the closure of the image of the considered solution $u$). As an application, we can prove a Liouville type theorem under various assumptions.", "revisions": [ { "version": "v3", "updated": "2014-04-08T13:57:27.000Z" } ], "analyses": { "keywords": [ "energy estimates", "allen-cahn type", "liouville property", "minimizers", "semilinear elliptic systems" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1403.1538S" } } }